A Topological Representation Theorem for tropical oriented matroids
نویسنده
چکیده
Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in arrangements of linear hyperplanes. Not every oriented matroid can be realised by an arrangement of linear hyperplanes though. The famous Topological Representation Theorem by Folkman and Lawrence, however, states that every oriented matroid can be represented as an arrangement of pseudohyperplanes. Ardila and Develin proved that tropical oriented matroids can be represented as mixed subdivisions of dilated simplices. In this paper I prove that this correspondence is a bijection. Moreover, I present a tropical analogue for the Topological Representation Theorem. Résumé. La notion de matroı̈de orienté tropical a été introduite par Ardila et Develin en 2007. Ils sont un analogue des matroı̈des orientés classiques dans le sens où ils codent les propriétés des types de points dans un arrangement d’hyperplans tropicaux – d’une manière très similaire à celle dont les covecteurs des matroı̈des orientés (classiques) décrivent les types de points dans les arrangements d’hyperplans linéaires. Tous les matroı̈des orientés ne peuvent pas être représentés par un arrangement d’hyperplans linéaires. Cependant le célèbre théorème de représentation topologique de Folkman et Lawrence affirme que tout matroı̈de orienté peut être représenté par un arrangement de pseudo-hyperplans. Ardila et Develin ont prouvé que les matroı̈des orientés tropicaux peuvent être représentés par des sous-divisions mixtes de simplexes dilatés. Je prouve dans cet article que cette correspondance est une bijection. Je présente en outre, un analogue tropical du théorème de représentation topologique.
منابع مشابه
A Topological Representation Theorem for Oriented Matroids Jürgen Bokowski Simon King Susanne Mock
We present a new direct proof of a topological representation theorem for oriented matroids in the general rank case. Our proof is based on an earlier rank 3 version. It uses hyperline sequences and the generalized Schönflies theorem. As an application, we show that one can read off oriented matroids from arrangements of embedded spheres of codimension one, even if wild spheres are involved.
متن کاملTopological Representation of Dual Pairs of Oriented Matroids
Among the many ways to view oriented matroids as geometrical objects, we consider two that have special properties: • Bland’s analysis of complementary subspaces in IRn [2] has the special feature that it simultaneously and symmetrically represents a realizable oriented matroid and its dual; • Lawrence’s topological representation of oriented matroids by arrangements of pseudospheres [4] has th...
متن کاملTopological Representations of Matroids
One of the foundations of oriented matroid theory is the topological representation theorem of Folkman and Lawrence [8]. It says that an oriented (simple) matroid can be realized uniquely as an arrangement of pseudospheres. That there is no similar interpretation for the class of all matroids has been taken for granted. For instance, “A non-coordinatizable matroid of abstract origin may be thou...
متن کاملRedundancy and Helly
The classical Helly’s Theorem about finite sets of convex sets is given an unusually simple proof based on a ‘Redundancy Lemma’. Because the proof is topological it extends immediately to a Helly’s Theorem for the well-known combinatorial topology representation of oriented matroids which is reviewed. The same proof is then used to strengthen Helly’s Theorem in a useful way relative to the Fark...
متن کاملAcyclic reorientations of weakly oriented matroids
Theorem A extends to oriented matroids a theorem for graphs due to Stanley [ 131. It contains Zaslavsky’s [ 141 result, published independently the same year, on the number of regions determined by hyperplanes in Rd. Generalizations of Theorem A can be found in [6, 7, 10-121. The number a(M) = t(M; 2,0) is an important invariant of an oriented matroid M. By Theorem A, a(M) counts the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 142 شماره
صفحات -
تاریخ انتشار 2016